
Chapter 4: Time-Dependent Indentation

The effects of time-dependent deformation on indentation experiments are

considered in both analytical and experimental frameworks.  Two different analytical

approaches are considered, elastic-viscoelastic correspondence operations and an

empirical viscous-elastic-plastic model.  Experimental results are presented for

indentation testing on time-dependent materials, including mineralized tissues bone and

dentin.
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4.1 Time-Dependent Effects in Indentation Testing

This section will focus on the demonstration of time-dependent mechanical

behavior as seen during indentation testing under load-controlled conditions.  Examples

of time-dependent behavior experimental results are shown here for polymeric and

biological materials.  

4.1.1 Hallmarks of Indentation Creep

Nanoindentation has developed into a standard technique for measurement of

local properties of engineering materials.   This has been due in part to the availability of

commercial instruments for small-scale contact testing along with the development of a

standard analytic technique for mechanical property deconvolution (the “Oliver-Pharr”

method).  This technique relies on a mechanical response which is time-independent in

the experimental timeframe.  

Because of the capability for localized testing, nanoindentation testing is

particularly well-suited to the analysis of biological materials, whose properties can vary

substantially from point to point [Cuy et al, 2002].  This property variation may be based

on variations in local composition, microstructure, and cell activity.  However, the time-

dependent nature of many biological materials has led to questions about the use of DSI

for testing and analysis of these tissues.   

The measured mechanical behavior of time-dependent materials depends on the

experimental time frame utilized in the material characterization, as described in this

work as the experimental “rise time”, tR.  During a load-controlled nanoindentation test,

creep is frequently observed in three ways, which will be illustrated here for indentation

tests conducted on a time-dependent polymer (PMMA):  (i) increasing displacement

during a holding period at fixed peak load (Figure 4-1); (ii) forward-displacing creep

during unloading such that the maximum displacement does not occur at peak load
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(Figure 4-2); (iii) different load-displacement responses resulting from loading at

different rates (Figure 4-3).  Various schemes for trying to minimize time-dependent

effects in indentation have been proposed, most centered on trying to “exhaust” the creep

with a long holding time at peak load, in an attempt to obtain purely elastic (e.g. creep-

unaffected) unloading in order to use the Oliver-Pharr deconvolution scheme [Briscoe et

al, 1998; Feng and Ngan, 2002].  

Figure 4-1: Indentation load-displacement (P-h) and creep-displacement-time (h-t)
responses for PMMA at peak load (Pmax) 10 mN.

Figure 4-2: Indentation load-displacement (P-h) responses  for PMMA conducted at
slow rate (long rise time) to illustrate forward-displacing creep on unloading, and

thus apparently negative stiffness (S) 
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Experimentally observed creep introduces errors when traditional elastic-plastic

(Oliver-Pharr) analysis of nanoindentation data is used and time-dependence is ignored.

In particular, forward-displacing creep negates the assumption in Oliver-Pharr that the

slope of the unloading response is purely elastic recovery.  Creep during unloading can

increase the unloading slope, artificially increasing the perceived stiffness and in turn the

calculated elastic modulus.  In extreme cases, the unloading stiffness becomes negative

because the creep displacement is greater in magnitude than the elastic recovery (Figure

4-2).  

Figure 4-3: Indentation load-displacement (P-h) responses  for PMMA conducted to
peak loads (Pmax)of 10 mN at rise times (tR) of 5, 50, and 500 s.

Time-dependent deformation also affects perceived values of the contact hardness,

resulting in contact hardness values that appear smaller for slower loading rates (Figure 4-

4).  The smaller contact hardness values are not just an artifact of the deconvolution

process, but correspond to increased size of the indentation residual impression.  This is

shown in Figure 4-5 for indentation tests at three different loading rates on the same

polymeric material.  As the impression area is in the denominator of the equation for

contact hardness (Eqn. 3-12), physically larger residual impressions are associated with

smaller contact hardness values. 
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Figure 4-4: Contact hardness (Hc) deconvoluted from PMMA indentation traces
conducted to peak loads (Pmax) of 10 mN at rise times (tR) of 5, 50, and 500 s.  The

perceived hardness decreases with slower loading,  

 

Figure 4-5: Residual impressions for indentation tests on PMMA, performed at rise
times (tR) of (left) 5 s, (center) 50 s, and (right) 500 s.  There are changes in both the

size and shape of the impression for different rise times.  

Examples of time-dependent indentation behavior in mineralized tissues will be presented

next.
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4.1.2 Indentation Creep in Mineralized Tissues

Indentation creep in dry bone is shown in Figure 4-6 for tests conducted with a

Berkovich indenter tip, under loading to 100 mN in 20 seconds and holding for creep for

two minutes.  The creep displacement is about 300 nm for each test, which is equal to

approximately 10% of the total deformation during loading.  

Figure 4- 6: Bone creep test (left) load-displacement (P-h) respose with peak load
(Pmax)  100 mN, and rise time (tR) 20 s; (right) creep displacement-creep time

response during the 120 s holding period.

Rate-dependence was evaluated in dry dentin by conducting indentation tests at

different rates.  Tests were performed in duplicate to peak load levels of 10 mN with rise

times of 30, 100, and 300 seconds.  The experimental load-displacement traces are

illustrated in Figure 4-7 (left).  Time-dependence in the indentation response is present

even in the dehydrated dentin tissue.  The time-dependence and its effect on the shape of

the indentation responses can be examined in more detail by normalizing the load-

displacement (P-h) curves by the peak point {h(Pmax), Pmax}.  The changes in the

unloading response due to time-dependence are then clearly visible (Figure 4-7, right).
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Figure 4-7: (left) Dry dentin indentation load-displacement (P-h) responses for
constant loading rate indentation tests at three different loading rates (rise times).

The total displacement increases with longer rise time.    (right) Normalized
indentation responses (h/h(Pmax), P/Pmax) for dry dentin  responses seen in on the

right.  Differences in unloading curve shape with rate are evident on the normalized
plot (especially in the zoomed region at far right).  The unloading response is steeper

for larger values of the rise time (tR) corresponding to slower loading.      

Although the examples presented in Figures 4-1 to 4-7 demonstrate time-

dependent mechanical behavior during indentation testing conditions, until recently

insufficient methodologies have existed for quantitative examination of indentation

testing in time-dependent materials, with the exception of the primitive model-

independent measures discussed in section 2.2.1.  Explicit viscoelastic models for

indentation have been the focus of much recent research [Cheng et al, 2000; Sakai and

Shimizu, 2001; Lu et al, 2003; Oyen and Cook, 2003; Oyen, 2005]  and will be discussed

at length next in this chapter.  
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4.2 Viscoelastic Indentation by Radok Correspondence

In the case of an elastic indentation problem, there is a closed-form analytical

solution for the load-displacement behavior.  As was discussed in Chapters 2 and 3, the

relationship between load (P) and displacement (h) is not linear, with P ~ h3/2 for

spherical indentation and P ~ h2 for conical-pyramidal indentation.  Lee and Radok

[1960] proposed in a landmark paper that a pseudo-linear viscoelastic analysis could be

performed for the indentation problem by replacing the elastic constants within the

nonlinear load-displacement relationship with viscoelastic operators.  In the simplest

case, when the material is incompressible (ν = 0.5), the first approximation to the

viscoelastic problem is quite simple.  The approach is actually quite similar to the “Quasi-

Linear Viscoelastic” (QLV) analysis frequently employed for time-dependence in soft

biological tissues [Fung, 1993].  Correspondence analysis has been used to examine

indentation with a Standard Linear Solid model for a flat punch [Cheng et al, 2000] or

spherical indenter tip [Cheng et al, 2005], and for a variety of tip geometries using a

Maxwell material model [Sakai and Shimizu, 2001].  In the current work, conical and

spherical indentation conditions are examined for viscoelastic materials in general,

followed with an analysis is developed for multiple time-constant material models with

an emphasis on loading conditions more experimentally attainable than the step-loading

creep assumption used by Cheng et al [2005].   

4.2.1 Nonlinearly Viscoelastic Indentation Mechanics

The relationship between the elastic modulus (E) and shear modulus (G) for and

incompressible, isotropic elastic material is:

G= E
21

= E
3 [4-1]
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and the indentation (plane strain) modulus is:

E '= E
1−2

=4 E
3
=4G [4-2]

Recalling the elastic solution for a spherical indenter (Hertzian contact)

h3 /2= 3
4R

P
1−2
E

[4-3]

and replacing the plane strain modulus with the shear modulus gives:

h3 /2= 3P
16G R [4-4]

Similarly, the elastic solution for a conical (or pyramidal) indenter is:  

h2=
22

 tan
P
1−2
E

[4-5]

which can be written in terms of the shear modulus for an incompressible material as:

h2=
P 2

2G tan
[4-6]

For viscoelastic  correspondence under load-control  (as in indentation testing)  P/2G is

replaced in the elastic solution [Johnson, 1985] with an integral operator for load-control:
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[ P2G]∫0t J t−t '  d P t ' d t '
dt ' [4-7]

where J t  is the shear creep compliance for the material [Lee and Radok, 1960].

The elastic solutions for spherical and conical indentation can be rewritten as:

h3 /2= 3
8R[ P2G] [4-8]

h2=
2

 tan[ P2G]  

and then , in terms of the viscoelastic operator,

h3/2= 3
8R∫0

t
J t−t '  d P t ' 

d t '
dt ' [4-9]

h2=
2

 tan
∫0
t
J t−t '  d P t ' 

d t '
dt '

The hereditary integrals can then be solved for any set of loading conditions, including

creep at fixed load following a step load, ramping at constant loading rate, and creep

following ramp loading at constant loading rate.  A key issue with this Lee and Radok

[1960] correspondence analysis, particularly relevant to the indentation problem, is the

requirement that the contact are be non-decreasing.  Therefore, the unloading segment of

the indentation test cannot be solved using this analysis, but loading and creeping

segments can.  

For the simplest case, creep following a step load, the load input is

P t ' =P0H t '    where H(t)  is the Heaviside step function.  In this case, the term

[P/2G] becomes simply P0 J(t) after integration, and the creep displacement for spherical

indentation is:  
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h3 /2t =
3 P0
8R

J t 

The instantaneous (zero-time) shear modulus G can be found by 

G= 1
2 J 0 [4-10]

where the factor of two arises because of the definition of shear and normal strains [Lee

and Radok, 1960; Johnson, 1985].  

For the standard linear solid model (Figure 2.18iii) the creep compliance function

is (Eqns 2-28, 2-29):

J t = 1
g1
 1
g2
1−exp−t /C  where C=/g2 [4-11]

Using this standard linear solid model, the practical implementation of the

correspondence analysis for creep data  is simple.  After raising the displacement data to

the appropriate power, the creep data can be fit to an exponential decay function for creep

of the form:

hnt =B –C exp−t /C [4-12]

where n = 3/2 for Hertzian, n = 2 for Berkovich.  Abbreviating the indentation geometry

constants kG  where: 

kG=
3

16R for Hertzian [4-13] 
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kG=
2

2 tan
 for Berkovich [4-14]

the fitting parameters are simply related to the material constants:

B=kG P0 1g1 1g2 [4-15]

C=kG P0
1
g2

[4-16]

The shear modulus can be found by

G= 1
2 J 0

=
g1
2

[4-17]

The process of calculating the shear modulus is similar for generalized creep

compliance functions with more than one time-constant (Eqn. 2-30).  

4.2.2 Creep Following Ramp Loading

An important analysis is for the creep test following ramp loading instead of an

experimentally unattainable step load, which is easily solved following integration

utilizing the Boltzmann hereditary integral. 

For a ramp from zero load to a peak load for a creep test, the loading conditions

can be written:

 

P t =k t , 0≤t≤tR [4-18]

P t =Pmax=k tR , t≥tR [4-19]
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The hereditary integral (eqn. 4-9) must be solved twice, for the ramp (eqn. 4-18) and hold

(eqn. 4-19): 

h3 /2t = 3
8R∫0

t

J t−uk du , 0≤t≤tR [4-20]

h3 /2t = 3
8R[∫0

tR

J t−uk du∫
tR

t

J t−u0du]= 3
8R∫0

tR

J t−uk du , t≥tR

[4-21]

The solutions to these integral equations are completely dependent on the choice of

material creep function J(t) over which the integration is conducted.  Solution of eqns. 4-

20 and 4-21 for the creep function given by eqn. 2-30 gives

h3 /2t = 3k
8R [C 0 t−∑Cii1−exp−t /i] , 0≤t≤tR [4-22]

h3 /2t = 3k
8R [C 0 tR−∑Cii exp−t /iexptR /i−1] , t≥tR [4-23]

Eqn. 4-23 for the creep segment can be directly fit to the data to obtain parameter values,

and the ramp and hold  segments (Eqns. 4-22 and 4-23) can be repredicted.  

This procedure is illustrated in Figure 4-8 for indentation tests on PL-1 polymer

for indentation creep tests performed to 100 mN peak load with rise times of 20, 50, 100,

and 200 seconds and an indenter tip radius of 150 µm.  The creep data from the 20 s rise

time were fit to eqn. 4-23 using a two time-constant relaxation function and the full

response was predicted from the obtained parameters and Eqns. 4-22 and 4-23.  The

responses from the three other rise times were then predicted from the parameters

obtained from the fit to the 20 s rise time data.  There is excellent predictive capability for

the  slower rise times.  The creep-portion of the data from Figure 4-8 are shown in Figure
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4-9 on an expanded scale, where the displacement and time have been reset to zero at the

start of the holding period.  The  solid lines are the predictions from Figure 4-8. 

 

Figure 4-8: PL-1 polymer indentation ramp-and-hold creep displacement-time (h-t)
experimental data (open symbols) for loading to 100 mN at four different loading

rates.  The solid lines are fits and predictions from Eqns. 4-22 and 4-23 as marked,
using a two-time constant relaxation function.
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Figure 4-9: Creep displacement-time (h-t) data from the load-hold portion of the
PL-1 polymer data shown in Fig. 4-8.  Predictions for the creep displacement are

shown as solid lines on the graph.

The shear modulus (G) value obtained from the parameters was 1.3 GPa, in good

agreement with the known value of 1.1 GPa.  Spherical indentation has great promise in

eliminating the uncertainties and unknown effects associated with the elevated modulus

seen in Berkovich indentation of polymers (Section 3.1.2.2).  

The results presented here were for spherical indentation using a very large radius

indenter tip on a polymeric material.  For spherical indentation, especially if the spherical

indenter tip is large relative to the depth of the indent, this analysis is itself sufficient as

the deformation can be restricted to purely elastic or viscoelastic.  In the case of

Berkovich indentation there is  time-independent plastic deformation on loading in all

materials but elastomers.  Therefore, the use of Radok correspondence for pyramidal

indentation testing is not very practicable in most experiments.  However, most
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indentation tests at nano- to micro-scale are typically performed with sharp, pyramidal

indenters such as a Berkovich or cube-corner, particularly because of the improved spatial

resolution in measurements.  Therefore, in the following section, conical/pyramidal

indentation with combined viscous, elastic, and plastic deformation is considered and an

empirical model is used to examine the time-dependent deformation in a glassy polymer.
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4.3 The “VEP” Model

In this section, an empirical model for pyramidal indentation of viscous-elastic-

plastic materials is briefly reviewed.  (This model was co-developed by myself in

previous research work.)  A new procedure for fitting unloading data to obtain VEP

parameters is then developed and tested for indentation tests on a polymeric material with

known elastic modulus.  

4.3.1 Model

As discussed previously, the load is proportional to the square of the displacement

in conical-pyramidal indentation testing.  The VEP model [Oyen and Cook, 2003] is an

extensively framed model for time-dependent indentation based on quadratic elements

developed in analogy to the linear elements classically associated with viscoelastic

mechanical models.  The elastic element, instead of a linear spring, is given by: 

Pe=2E ' he
2 [4-24]

where Pe and he are the load and displacement on the elastic element,where E' is the plane

strain modulus of the material (Eqn 2-17) and α2 is the dimensionless geometrical factor

(obtained by comparison of Eqns 4-24 and 4-5) equal to 4.4 for a Berkovich indenter.

Under indentation conditions, substantial plastic deformation can occur beneath the

indenter.  For a rigid, perfectly plastic material, a deformation element constrained by

geometric similarity, appropriate to conical or pyramidal indentation is

P p=1H hp
2 [4-25]

where Pp and hp are the load and displacement on the plastic element, H is the resistance
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to plastic deformation (see Appendix B), and α1 = π tan2 ψ is the dimensionless geometry

parameter for a sharp indenter with effective included angle 2ψ, such that the value of α1

is equal to 24.5 for a Berkovich indenter.

In direct analogy with the linear dashpot, a quadratic viscous constitutive response

was chosen in which the load is proportional to the square of the displacement rate:   

Pv=2E ' Q
2d hvd t 

2

=2Qd hvd t 
2

[4-26]

such that an empirical time constant can be defined as

Q=Q /E '  [4-27]

A series combination of these three elements (viscous, elastic, plastic) is a direct

extension of a linear Maxwell model but for geometrically-similar (quadratic) indentation

conditions and including plasticity.  This series assumption gives equal loads in the three

elements and a total displacement arising from the sum of the displacements in the

individual elements.  Since the displacements sum, the displacement rates also sum,

giving the VEP constitutive differential equation:

d h
d t
= P1/2

2Q
1/2

1
2P1/2

d P
d t [ 1

2E ' 
1/2

1
1H 

1/2] [4-28]

This constitutive relation can be solved for different loading conditions, and in particular

for conditions used in indentation experiments, such as constant loading and unloading at

fixed rates.  In contrast to Radok correspondence (section 4.2) there is no restriction on

the contact area increasing at all times, such that the unloading condition for a standard

load-unload indentation test can be solved explicitly.  For a loading segment under
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constant loading rate (k)  up to a peak load, Pmax, at time tR,  the loading conditions can be

represented as

P t =k t
d P
d t
=k   for 0≤t≤tR [4-29]

which upon insertion into the VEP constitutive equation (Eqn. 4-28) gives

d h
d t
= k t 1/2

2Q 
1/2

k 1/2

2 t1/2[ 1
2E ' 

1/2
1

1H 
1/2] [4-30]

This simple differential equation is solved to give:

hLOAD t =k 1/2 t1/2[ 2 t
33Q

1/2
1

2E ' 
1/2

1
1H 

1/2] [4-31]

For unloading from the peak load (Pmax) at time t = tR, for constant unloading rate

(-k) equal to the negative of the constant loading rate, the loading input is defined by

P t =k tR−k t−tR=k 2 tR−t 
d P
d t

=−k ;
tR≤t≤2 tR [4-32]

For unloading with perfect plasticity, the plastic element is suppressed such that hp = hp
max

= hp(tR) and thus dhp/dt = 0.  The unloading constitutive equation is thus truncated from

Eqn. 4-28 to give
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d h
d t
=
k 2 tR−t 

1/2

2Q
1/2 − 1

k tR−t 
1/2

k
22E ' 

1/2 [4-33]

which is solved to give the unloading response for times greater than tR:

hUNLOAD=[ 1
2E ' 

1/2
1

1H 
1/2

2 t R
32Q

1/2]k t R1/2 1
2E ' 

1/2 [2k t R−kt 1 /2−k t R1/2]

− 2
3k 2Q

1/2 [2k t R−kt 3/2−k t R3/2]

[4-34]

Only for such non-monotonic loading (e.g. the combination of loading and unloading) is

there is a distinction between the elastic and plastic elements, a situation which will be

used in the next section in developing a technique for routine implementation of this

model.

4.3.2 Adaptation of the VEP Model to Routine Testing

In the VEP unloading response (Eqn. 4-34), information to fit all three parameters

is contained in this single equation: the unloading response initiates at a point depending

on all three modes of deformation, but contains no further plastic deformation (this was

fixed at Pmax) and the unloading response is the competition between the elastic recovery

and further viscous deformation.  The usefulness of this unloading curve in examining

pyramidal indentation of viscous-elastic-plastic materials was examined first using a

polymer (PL-1).  

Indentation tests were performed to different peak load levels (Pmax = 0.3 to 300

mN) using fixed 30 second rise times (tR) with four repeats per load level.  The VEP

unloading h-t solution (Eqn. 4-34) was fit to the experimental unloading data for each PL-

1 polymer indentation trace using the nonlinear curve-fit function (Levenberg-Marquardt

iterations) in a commercial analysis package (Microcal Origin 6.1, OriginLab,
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Northampton, MA).  A representative unloading displacement-time (h-t) fit is shown in

Figure 4-10 (left) for a 100 mN indentation test.  The modulus, hardness, and empirical

viscosity properties (E', H, ηQ) were calculated from the numerical values of the

dimensionless geometrical constants for a Berkovich indenter, α2 = 4.4 and α1= 24.5.  The

time constant Q was calculated from the modulus and viscosity terms as per Eqn 4-27.

The full loading- and unloading response was generated from the VEP model (Eqns. 4-31

and 4-34) based on the properties obtained from the fit, and is shown as the solid line in

Fig. 4-10 (right).  

Figure 4-10: (left) Unloading displacement-time profile for PL-1 polymer
indentation.  The hollow symbols are experimental data and the line is the fit.

(right) The full PL-1 experimental load-displacement (P-h) trace (hollow symbols)
from same data shown on the left.  The solid line is the full loading- and unloading
response  from VEP model, generated using the parameters obtained from the fit.

Following the fits for indentation tests at all peak load levels, parameters at each

load level were averaged, standard deviations were calculated, and the numerical results

are presented in Table 4- 1.  There was a slight trend downward in elastic modulus with

rise time, consistent with the data shown in Figure 3-9 from continuous stiffness

measurements of the same PL-1 polymer in which the Oliver-Pharr modulus was a

decreasing function of displacement.  However, while the Oliver-Pharr modulus was
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substantially elevated with respect to the tensile modulus (E ~ 3 GPa) the VEP values

were comparable to the tensile modulus (Figure 4-15).  The viscosity and time constant

trended slightly upwards with peak load level, indicating less time-dependence in the

response at greater depths.  The resistance to plastic deformation (H) was very large at the

smallest load levels (0.3, 1 mN), and was approximately fixed at about one third the

surface value at larger peak loads.  

Table 4-1: PL-1 properties from VEP fits.  Means and standard deviations for four
indentation tests per load level.

Pmax (mN) E (GPa) H (GPa) Q (TPa-s2) Q (s)

0.3 3.63 ± 0.34 4.86 ± 2.17 100 ± 34 153 ± 21
1 3.40 ± 0.34 4.57 ± 3.95 87 ± 18 149 ± 9
3 3.69 ± 0.20 1.97 ± 0.37 140 ± 49 180 ± 26
10 3.43 ± 0.17 1.71 ± 0.25 131 ± 33 181 ± 19
30 3.05 ± 0.02 1.42 ± 0.07 138 ± 11 199 ± 8
100 2.72 ± 0.10 1.35 ± 0.04 187 ± 17 246 ± 16
300 2.50 ± 0.11 1.48 ± 0.10 160 ± 15 237 ± 14

Now that a protocol has been established for calculating VEP parameters from an

unloading displacement-time data curve-fit, the method will be applied to examine

indentation data for tests on mineralized biological tissues.  I begin with a test case, to

examine what should be an obvious change in time-dependent mechanical behavior, for

comparisons of dry and hydrated dentin.
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4.4 Time-Dependent Indentation Experiments on Mineralized Tissues 

Indentation tests were performed at constant loading rates on both dry and wet

dentin to examine the effect of hydration on VEP properties.  Bone indentation responses

for tests performed under identical conditions were then examined to establish the point-

to-point variation in bone VEP properties.

4.4.1 VEP Analysis of Dentin Hydration 

The effect of hydration on the indentation responses of dentin tissue was evaluated

by performing tests on the same sample under identical indentation conditions (Pmax = 10

mN, tR = 100 s) in different hydration states: (1) as-received (from the freezer) dry dentin,

(2) after soaking the tissue for one hour in distilled water, and (3) after allowing the

sample to dehydrate in air for three hours following the rehydration.

Raw load-displacement traces for indentation tests on dentin in the three states of

fluid hydration are shown in Figure 4-11.  The dehydrated tests (stage (3) above) are

similar to the original dry tests.  The effect of hydration is two-fold: (i) the total

displacement (at both Pmax and at the end of the test) increases, and (ii) the variability in

indentation responses also appears to increase.  

Examination of these data in normalized coordinates illustrates the changes to

indentation unloading response shape with hydration (Figure 4-12).   The dehydrated

(stage 3) traces have the same shape as the original dry traces, while the hydrated traces

display a steeper unloading response compared to the non-hydrated traces.  The responses

for the three hydrated tests are all different.
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Figure 4-11: Indentation load-displacement (P-h) responses  for dry dentin, after soaking in water,
and after dehydrating in air after the wet-testing.  

Figure 4-12: Normalized indentation responses (h/h(Pmax), P/Pmax) responses  for dry dentin, after
soaking in water, and after dehydrating in air following the wet-testing.  
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Table 4-2 contains the mean and standard deviation for mechanical properties

obtained from the dentin load-displacement traces shown in Figs 4-16 . Both Oliver-Pharr

(O-P) elastic-plastic deconvolution (section 2.1.4) and VEP time-dependent

deconvolution (section 4.3.2) were separately employed to fit the unloading data and

obtain property values, and are presented together here for comparative purposes. 

Table 4-2: Mechanical properties deconvoluted from dentin indentation load-
displacement traces using Oliver-Pharr deconvolution or the VEP model

(1) dry (2) re-hydrated (3) de-hydrated
O-P Modulus, E' (GPa) 28.3 ± 0.2 42.9 ± 17.1 29.8 ± 2.4
O-P Contact Hardness, Hc (GPa) 0.87 ± 0.01 0.61 ± 0.11 0.89 ± 0.08
VEP Modulus, E' (GPa) 30.5 ± 1.3 21.6 ± 4.6 30.5 ± 1.6

VEP viscosity, 10-15ηQ (Pa s2) 7.8 ± 1.4 1.3 ± 0.8 6.3 ± 0.4

VEP Time Constant, τ (s) 505 ± 33 235 ± 65 453 ± 16

VEP Hardness, H (GPa) 2.18 ± 0.07 2.38 ± 0.49 2.39 ± 0.29

Interesting patterns emerge from examination of the numerical data.  The dry

(stage 1) and dehydrated (stage 3) data are comparable for all properties.  For the Oliver-

Pharr deconvolution, the elastic modulus results from the hydrated condition are likely

affected by the unloading stiffness problems discussed above in section 4.1 such that the

unloading slope does not represent purely elastic unloading, but a competition between

elastic unloading and further viscous deformation.  As such the elastic modulus is large

and overstated, and thus the counterintuitive result for a substantially increased modulus

with hydration.  The O-P contact hardness data are more intuitive, with an approximately

30% decrease in contact hardness for hydrated samples compared with dry samples.

The VEP modulus results do not suffer from the problems associated with Oliver-

Pharr deconvolution for hydrated tissue, and demonstrate about a 30% decrease in

modulus for hydrated samples compared to dry samples.   In the dry state, the VEP and

OP modulus values are approximately equal.
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VEP plastic deformation resistance (H) is unchanged in the three conditions.  The

time constants were approximately halved for the hydrated state, which relative to the rise

time of 100s would give substantially increased viscous deformation.  The VEP viscosity

numbers reflect this  trend towards more viscous behavior as well, with about five or six

times lesser viscosity in the hydrated state compared to the dry state. 

The drop in elastic modulus observed in this study was greater than has been

noted in tensile testing of wet and dessicated dentin, for which the modulus of wet dentin

was 15% lower than dry dentin [Huang et al, 1992].  The numerical values from tensile

testing (15 and 18 GPa for wet and dry, respectively) were also substantially lower than

those observed here for indentation  which may reflect difficulties in the tensile testing

method or apparatus for extremely small tooth samples.  However, the decrease in yield

stress with hydration in the tensile study [Huang et al, 1992] was 24%, comparable to the

30% decreases in O-P contact hardness seen in the current study, reassuring given that the

contact hardness is reported to be directly related to yield stress, [Tabor, 1951]. 

4.4.2 VEP Analysis of Healing Bone  

Next, the viscous-elastic-plastic (VEP) empirical indentation model was used to

assess the point-to-point variability of properties in dry healing porcine bone.  Constant

loading- and unloading-rate depth-sensing indentation tests were performed at a constant

loading rate (0.333 mN s-1) to a peak load of 10 mN.  A total of 75 separate indentation

tests on bone samples from two animals with bone healing times of one month (Section

3.2.1) were analyzed for the current study.  Spatial position was recorded for each

indentation test and approximate distance from the implant interface was calculated.  The

load-displacement-time data for each test was exported for unloading fits to the VEP

(viscous-elastic-plastic) model (Section 4.3.2).  For indentations in bone, a Poisson's ratio

of ν = 0.3 was assumed [Zysset et al, 1999] for calculating elastic modulus (E) from plane

strain modulus (E').  
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Indentation traces for the healing bone samples demonstrated substantial point-to-

point variation.  Three experimental traces from the same region of the same sample are

shown in Figure 4-13 (left) as open symbols.  The unloading displacement-time (h-t) data

for each curve were fit to Equation 4-34 and the loading response then predicted from

Eqn  4-31 based on the obtained fitting parameters.  The complete VEP load-

displacement (P-h) traces are illustrated by the solid lines in Figure 4-13 (right),

demonstrating that the experimental bone indentation data were well-described by the

VEP model.  

Fig. 4-13 (left) Displacement-time (h-t) traces for the unloading segment of three
indentation tests on healing bone.  Experimental data for three different locations
on the sample are shown as open symbols; solid lines are fits to Eqn. 4-34.  (right)
Experimental load-displacement (P-h) responses for both loading and unloading
responses of the same three indentation tests as above (open symbols). The solid

lines were generated from the VEP model (Eqns 4-31 and 4-34)   using the
parameters obtained in the fits.

Variation in the VEP properties E ,H ,Q  is shown as a function of distance

from the bone-implant interface in Figure 4-14.  There were variations with indent

location over an order of magnitude for E and H, and over two orders of magnitude for

Q .  The average elastic modulus for all indents was 21.6 GPa.  There was a trend for

increasing property values with increased distance from the bone-implant interface for
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both E and Q (p = 0.02 and p < 0.01 respectively for linear regression in logarithmic

coordinates), but no trend for plastic deformation resistance H (p = 0.893).  

Figure 4-14  VEP model fitting parameters as a function of distance d from the
bone-implant interface in two porcine samples: (top) modulus E; (middle) plastic
deformation resistance H; (bottom) indentation viscosity ηQ.  All three properties
demonstrated substantial variability in both animals (individual animals shown as

different symbols, o and *).

A graphical representation was used to examine the variability in bone indentation

VEP parameters.  Representative indentation traces were constructed by inputting the

mean properties from Figure 4-14 (viscosity, modulus, and hardness) into the VEP model

(Eqns 4-31 and 4-34).  Variation in each parameter was assessed by holding two of the
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three parameters fixed to the mean value obtained in the current study, and varying the

third parameter to the minimum and maximum values obtained in the study.  The mean

representative response is shown as the solid line in Figure 4-15. 

Fig. 4-15 Graphical representation of the range of indentation responses obtained in
the current study.  The VEP response corresponding to the average modulus, plastic

deformation resistance, and viscosity terms from all samples is represented by the
solid curve in each graph.  Holding the other two parameters fixed, the (top)

viscosity, (middle) modulus, and (bottom) plastic deformation resistance is varied
over the range of values obtained from fits in the current study.  The dotted lines in

each plot represent the minimum and maximum values for the varied parameter.
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The dotted lines in Figure 4-15 demonstrate the variability in indentation load-

displacement response due to variations in each property.  The most substantial variation

in the current study was due to differences in plastic deformation resistance (H), and the

least amount of variation was due to differences in time-dependence.  

In this study, the mechanical properties varied substantially with indent location in

samples of healing bone.  An iterative curve fitting technique was used to calculate three

different indentation properties using only the unloading displacement-time response

from a constant loading- and unloading-rate indentation test.  The curve-fit technique,

adapted from a viscous-elastic-plastic indentation model, allowed for simple calculation

of material parameters for each indentation test.  

The average elastic modulus obtained from the VEP model, 21.6 GPa, was in

good agreement with previously reported values for dry bone [Rho et al, 1997] even

though the modulus was obtained via a different (Oliver-Pharr)  property deconvolution

model.  The value also agrees well with the Oliver-Pharr modulus seen for elastic-plastic

analysis of a subset of these same tests, 17.9 GPa (section 3.2.2).  Both Oliver-Pharr

analysis and the VEP model are based on the same elastic contact mechanics, so this

agreement in elastic modulus would be anticipated for the two approaches.  

Both the VEP model itself and the implementation of large-scale use of the model

via a fit to the unloading data show great promise for analysis of indentation in time-

dependent materials.  The ability to measure this time-dependence directly by indentation

is a great improvement over techniques aimed at purely removing time-dependence and

measuring modulus only [Chudoba and Richter, 2001; Fan and Rho, 2003]. 

4.4.3 Implications of Viscosity-Modulus Correlations

The use of a model such as VEP allows for indentation analysis of both the

forward and reverse problems in indentation [Dao et al, 2001].  That is, the model can

both be used to extract parameters from experimental data (Figure 4-14) as well as to
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generate indentation traces given a set of input mechanical parameters, as shown in

Figure 4-15.  This capability will be used next to examine some implications for

performing Oliver-Pharr analysis on time-dependent materials.

The experimental data indentation data for bone, presented in Figure 4-14, are

characterized by an interesting relationships between two of the parameters.  The

indentation viscosity, Q , was found to be directly related to, and nearly a quadratic

function of, the elastic modulus (power law of 1.82, Figure 4-16).    This result has

interesting experimental implications for indentation analysis of materials with a small to

moderate degree of time-dependence, such as cases in which the unloading data do not

present an obvious forward displacing unloading “nose” (Figure 4-2).  In such cases,

many authors would use Oliver-Pharr analysis to extract mechanical parameters,

assuming that creep was not dominant in the indentation data.   

A VEP loading- and unloading- load-displacement trace was generated for the

same plastic deformation resistance (H = 0.67 GPa), and for which a base response is

compared with a response for doubled plane strain modulus (E' = 10 or 20 GPa) and a

corresponding quadrupled viscosity ( ηQ ~ 1e14 or 4e14  Pa-s2), following the

approximate relationship observed in Figure 4-16.  The numerical values of the

parameters were chosen to be representative of the results seen in the bone study

presented in the previous section.  These two VEP-generated load-displacement traces are

shown as the open symbols in Figure 4-17.  

As shown by the solid line approximations to the unloading stiffness (slope), the

stiffness (S) is unchanged in these two cases.  In Oliver-Pharr deconvolution,  the

unloading slope (S)  is used directly to calculate the plane strain modulus (Eqn. 2-15)

where A is the contact area.  The data shown in Figure 4-17 can be deconvoluted using

Oliver-Pharr analysis, which leads to apparent modulus values that differ by only a factor

of 1.2 (instead of two).  Since the “elastic” unloading stiffnesses (S) are approximately

equal, the apparent modulus difference would be entirely due to the slightly larger contact

area (A), resulting from  larger total displacement in the case of the E' = 10 GPa curve.  
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Figure 4-16 Illustration of the direct relationship between VEP viscosity (ηQ) on
modulus E.  The relationship was nearly quadratic (power law factor 1.82).  

Fig. 4-17 Two indentation load-displacement (P-h) traces generated from the VEP
model for plane strain modulus (E') values of 10 and 20 GPa and corresponding

viscosity values based on the data shown in Fig. 4-16.  The interactions of E and ηQ

result in an apparent equivalence of the unloading stiffness S in these two responses.
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Thus, even in the absence of an obvious  viscoelastic “nose” (forward deformation

on initial unloading),  viscous deformation can substantially alter the perceived

indentation mechanical properties when Oliver-Pharr analysis is used, in this case,

substantially underestimating differences in elastic modulus values.  Put another way,

ignoring the viscosity actually decreases the perceived variability using this analysis.

4.4.4 VEP Comparison of Bone and Dentin

There were interesting differences between the indentation responses of

mineralized tissues with similar compositions, bone and dentin, as shown in the elastic-

plastic indentation data presented in sections 3.3 and 3.4.  A further comparison of these

two materials, based on VEP analysis, is presented here.  

A series of raw load-displacement (P-h) responses for bone and dentin, both tested

dry and under the same indentation protocol (Pmax = 10 mN, tR = 30 seconds), are shown

in Figure 4-18.   (The bone data here are a subset of that presented in section 4.4.2 above,

chosen to be representative such that the averages here for the seven samples are

comparable to the overall averages for the whole study of 75 samples.  The dentin data

are different than those reported in section 4.4.1 due to the rise time differnce.)  As has

been illustrated previously in this work, dentin responses seem to vary little from point-

to-point while bone responses show tremendous local variations in response.  The dentin

responses also show uniformly smaller peak displacement values than bone under the

same loading conditions—there is less total deformation in dentin than in bone.  Also

shown in Figure 4-18 are the traces following normalization by the peak point.   The bone

response for one of test shown in Fig. 4-18 is somewhat comparable in shape to the

dentin responses, especially on unloading.  The remaining bone responses are different in

the shape of both the loading and unloading responses.  
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Figure 4- 18: (left) Load-displacement (P-h) traces for bone and dentin, both dry,
tested under the same conditions (10 mN-30s).  (right) Normalized load-

displacement traces (h/h(Pmax), P/Pmax) for the bone and dentin data on the left.

The values of parameters obtained from the raw load-displacement responses can

also be compared.  The mean VEP properties for bone and dentin are shown in Table 4-3

for the data presented in Figure 4-18.    The overall trend to much smaller total

displacements in the dentin responses (Figure 4-18) are associated with modulus values

about one and a half times those of bone, plastic deformation resistance parameters about

doubled those of bone, and time-constants about doubled those of bone.   This is

extremely interesting given the similarities of composition of bone and dentin; no

composite materials model would predict such large changes in the raw parameters based

merely on the <10% mineral volume fraction difference between the two materials.

Structural arrangements of mineral appears to be a potential factor (as will be discussed in

Chapter 5).  
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Table 4-3: Averages of parameters obtained for the VEP fits of load-displacement
(P-h) data shown in Fig. 4-23.   (4 dentin, 7 bone indentations)

Dentin Bone
Plane strain modulus, E' (GPa) 33.3 20.1
Plastic deformation resistance, H (GPa) 3.43 1.17

Indentation (VEP) viscosity, 10-15ηQ (Pa s2) 2.0 0.3

Indentation time constant, Q  (s) 215.6 111.8

Calculated contact hardness, Hc (GPa)* 0.99 0.40

* see Appendix B

Another interesting application of the VEP model is an examination of

deformation partitioning.  From the average VEP properties (Table 4-3) the amounts of

raw viscous, elastic, and plastic deformation (hV, hE, hP) can be calculated using Eqns 4-

24 to 4-26.  The partitioning of deformation components can be assessed by computing

the percentage of total deformation from each deformation mode.  These deformation

components, in both nm and %, are shown in Table 4-4 for dentin, bone and PL-1

polymer (from section 4.3.2), all tested under the same conditions (10 mN, 30 s) as

calculated from the property results shown in Tables 4-1 and 4-3.  Although the raw

parameters differ, the responses for bone and dentin are quite similar in balance of

deformation, with plastic deformation dominating the total.  The polymer response was

dominated by elastic deformation.  The time-dependence of all three materials was small

but not insignificant under these loading conditions.  

Table 4-4: Average deformation components calculated from the VEP data shown in
Tables 4-1 and 4-3.

PL-1 polymer Dentin Bone
Viscous deformation 83 nm (6.0%) 21 nm (3.3%) 55 nm (5.6%)
Elastic deformation 814 nm (58.7%) 261 nm (41.6%) 336 nm (34.2%)
Plastic deformation 489 nm (35.3%) 345 nm (55.1%) 591 nm(60.2%)
Total deformation 1386 nm 627 nm 982 nm
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4.5 Discussion

A relatively recent area of research is the development of techniques for

characterizing materials with time-dependent mechanical responses using indentation.

The hallmarks of time-dependent nanoindentation creep responses were presented here,

along with issues that can arise when time-dependence is neglected.  Two techniques for

analysis of indentation in viscoelastic materials were examined: Radok elastic-

viscoelastic correspondence best suited for spherical indenter tips, and an empirical

viscous-elastic-plastic (VEP) model exclusively for pyramidal indenter tips. 

In this chapter, time-dependent indentation behavior was demonstrated in

mineralized tissues, particularly bone and dentin, along with polymeric materials with

well-established viscoelastic behavior.  The effect of hydration on dentin behavior was

illustrated, along with the point-to-point variations in bone responses.  In hydrated

samples, responses for dentin were found to be more variable than for dehydrated

samples (section 4.4.1).  There was a large difference between VEP and Oliver-Pharr

deconvolution for hydrated samples, but little difference for dry samples.

Another  interesting result from the current examination of dry bone behavior in

particular is that the time-dependence may actually smooth out variability in Oliver-Pharr

(unloading stiffness-based) elastic modulus results, not increase the variability (section

4.4.3).  Therefore, for the dry bone data presented in Chapter 3, it does not appear that

hydration or dominant time-dependent behavior are the effects causing indentation

variability—both hydration and direct accounting for viscosity actually added to the

perceived variability.  These factors are not likely interfering with the ability to detect

trends with respect to healing time or distance from the bone-implant interface in the

dental implant study.  Therefore, further examinations of mineralized tissue

ultrastructure-mechanics relationships in the remainder of this work will emphasize

elastic mechanical behavior, with an emphasis on structural and compositional variations

as opposed to viscoelastic effects.  
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