
Chapter 3: Elastic-Plastic Indentation Experiments

This chapter will begin by addressing fundamental contact mechanics issues in

nanoindentation testing and analysis.  The analysis will be limited to elastic-plastic (time-

independent) materials and systems.  Elastic-plastic indentation testing and analysis will

then be applied to examine mechanical behavior of  mineralized biological tissues

including an examination of length-scale effects in indentation measurements.  Finally, a

new technique is developed for indentation mechanical property mapping in two-

dimensions.
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3.1 Elastic-Plastic Indentation Analysis 

A number of assumptions are built into the everyday operation of mechanical

testing devices, and nanoindentation devices in particular, even when the materials being

tested are “simple” (e.g. homogeneous, time-independent) engineering metals and

glasses.  Key issues associated specifically with nanoindentation testing will be discussed

here in detail within the context of time-independent materials (or materials with limited

time-dependent responses); the issue of time-dependence will be addressed in Chapter 4.

A critical assumption in indentation testing is that the instrument-tip combination

have been calibrated correctly to allow for the measurement of quantitative material

property information from the indentation test data.  Another question arises as to

whether the assumptions in the Oliver-Pharr analysis, built into the instrument software

and used for Berkovich elastic-plastic indentation analysis of stiff engineering materials,

are valid for compliant materials.  Finally, the frequently-reported relationship between

elastic modulus and contact hardness will be critically examined. 

3.1.1 Calibration 

Nanoindentation is a “garbage in, garbage out” mechanical testing modality,

particularly in the modern age of semi-automated instruments.  As with any mechanical

test, the raw load-displacement data is always available to the user, but material

properties such as elastic modulus can only be obtained following instrument calibration

and advanced data analysis.  In addition to the intrinsic machine compliance present in all

mechanical testing devices, in indentation testing the diamond (or tungsten, alumina, or

other stiff material) tip contacting the sample must be carefully calibrated and frequently

evaluated.  Surprisingly little has been written and published in the indentation literature

on the specific details of instrument calibration or issues such as error propagation due to

poor calibration.  Therefore,  the procedure will be described here in brief.  Data will be

presented illustrating the calibrated modulus-depth data for several materials,
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demonstrating that the indentation testing performed in the current investigation is indeed

quantitative and obtained from an instrument that was well-calibrated.

3.1.1.1 Typical Area Function Calibration

Quantitative evaluation of the elastic modulus (E') and contact hardness (Hc) for

an indentation test is completely dependent on knowledge of the indenter-sample contact

area (Eqn. 2-15).  For commonly-utilized elastic-plastic DSI data analysis [Oliver and

Pharr, 1992], the contact area of indentation is not measured directly using any

microscope visualization or related technique, but is inferred from the indentation data.

The fidelity of this inference relies directly on a careful calibration and frequent

verification of the calibration.  

The philosophy of the calibration protocol is simple: perform indentation tests on

a material with well-known mechanical properties, and deduce the contact area

implicitly, finding the area function required to obtain the expected mechanical properties

on the well-known material.  (An additional, and extremely useful step, is to then test the

area function on one or more additional materials with reasonably well-known

mechanical properties).  

The form of the contact area function, the function that relates depth in the

material to the projected contact area, is assumed to be (Eqn. 2-8; [Oliver and Pharr,

1992]):

A hc=C 0 hc
2C1 hcC 2 hc

1/2... [3-1]

Practically speaking, these first three terms are dominant, and in many cases, the first two

are sufficient [Thurn and Cook, 2002].  Identification of the area coefficients Ci  along

with identification of the frame compliance Cf together comprise the overall calibration.

(Frame compliance effects in calibration will be discussed in the following section).

Indentation tests for calibration purposes are performed using constant loading
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rate tests (triangular or trapezoidal loading) on a fused silica standard sample at different

peak load levels, typically in a logarithmic series (e.g. 0.1, 0.3, 1, 3, 10, 30, 100, 300

mN).  

As in standard Oliver-Pharr data analysis, three parameters (Pmax, hmax, S) are

obtained directly from the raw load-displacement (P-h) data.  From these parameters, the

contact depth is calculated :

hc=hmax−
Pmax

S
[3-2]

where =0.75 .  The reduced elastic modulus (ER, Eqn. 2-16) of fused silica is “forced”

to a fixed value (e.g. the known fused silica value for a diamond indenter, 69.6 GPa) and

the contact area for each indent is calculated:

Ac=
S 2
4 ER

2 =


4 ER
2

1
C 2

[3-3]

where C = compliance, the inverse of the stiffness.  Based on this calculation of area

from Eqn. 3-3 and the independent calculation of contact depth (Eqn. 3-2), the Ac-hc data

are fit to a polynomial of the form Eqn. 3-1.  The elastic modulus is then re-calculated for

all indentation tests using the area function obtained from the polynomial fit.  

This technique is simple and straightforward, although in practice it is prone to

errors resulting from both the curve-fitting and the enforced numerical value of the

elastic modulus.  Fine-tuning of the area function is usually required, in which the area

coefficients Ci are adjusted, and the contact area re-calculated (along with ER and Hc)

until the elastic modulus for one or more materials is constant with depth (but not

necessarily of a “forced”, known numerical value).   

Verification (and in some cases, fine-tuning or adjustments) of area function

calibration is easily performed using continuous stiffness measurements (section 2.1.6.1),
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in which the modulus can be explicitly evaluated over a wide range of indentation depths.

The small depth quantitative nature of the calibrated area function used in the current

work is demonstrated in a stiff material (fused silica, Figure 3-1).  The large-

displacement (3-10 µm) quantitative nature of the area function is demonstrated in a

substantially more compliant elastomer (polyurethane, Figure 3-2).

Figure 3-1: Elastic modulus (E) versus depth (h) for fused silica using continuous
stiffness measurements (CSM) at very small depths.  

Figure 3-2: Plane strain modulus (E') versus depth (h) for polyurethane using
continuous stiffness measurements (CSM) at very large depths.   
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The discussion of area function calibration to this point was described in isolation (e.g.

assuming the frame compliance was correctly set); the following section will examine

frame compliance effects in area function calibration.

3.1.1.2 Frame Compliance Effects in Calibration

A problem arises in this analysis in that the measured sample stiffness S may be

influenced by the compliance of the materials testing machine itself.  This is a well-

known issue in materials testing, but takes on extra importance in nanoindentation

devices compared to relatively stiff test-frames used for tensile testing at larger load- and

length-scales.  Thus the calculated area function my have an artifact due to this machine

frame compliance, C f , which must be calibrated separately.  The level of importance of

the frame compliance calibration actually varies due to both hardware and software

differences, as discussed here for two of the major indentation device manufacturers,

Hysitron and MTS.  The Hysitron transducer is inherently more compliant than that used

in the MTS testing system, (approximately one order of magnitude: compare compliance

values reported in [Thurn and Cook, 2002] to the Hysitron data below) likely due to the

different designs of the support springs.   Therefore, accurate compliance calibration is

intrinsically more important in quantitative indentation analysis using the Hysitron

instrument.  In addition to this magnitude difference, the MTS transducer is compliance

calibrated at the time of installation and this value is inserted in a protected location in

the software.  (There is a user-level “frame compliance correction” that can be

introduced, and this may be a positive or negative value since it is merely a small

correction to a compliance value already set in the software, but this correction is seldom

large and is frequently not necessary.)  The frame compliance value in the Hysitron

systems is a user-level software level input which could be changed from day to day, test

to test, and instrument user to instrument user.   Because of these differences between

instrument manufacturers, the discussion of frame compliance calibration from this point

forward will be conducted exclusively in the framework of the Hysitron indentation
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instrument and its associated software.  This discussion will also be limited to  technique 

) for the area function calibration above (this protocol is built into the Hysitron so

tware calibration module). 

For simplicity (and partially owing to the work of Thurn and Cook [2002] who

demonstrated the physical meaning of a simple quadratic function), an area function of

the form:

Achc=C 0 hc
2C1 hc [3-4]

will be used during the following analysis of calibration error.  It is noted that the area

function for a perfect Berkovich (3-sided) or Vickers (4-sided) pyramidal tip (with no

rounding and no bluntness at the tip) gives C 0=24.5  and C 1=C 2=C 3=...=0 .  

In a frame compliance correction (for indenters or for servohydaulic or

electromechanical test-frames) it is typically assumed that the total measured

experimental stiffness is the series combination of the sample stiffness and the frame

stiffness:

1
S
= 1

S sample
 1

S frame
[3-5]

or, written in terms of the compliance

S−1=C=C sampleC frame [3-6]

The frame stiffness (or compliance) must be taken into account (subtracted off the

measured stiffness or compliance) to accurately obtain sample elastic modulus from

sample stiffness.  Conversely, the frame compliance must be accounted for in the 

calibration of the tip area function, such that equation 3-3 becomes
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Ac=
S sample

2 
4 ER

2 =


4 ER
2

1
C−C f 

2 [3-7]

The tip area function and frame compliance can then be calculated through an iterative

procedure (albeit one which has been found to be unstable based on anecdotal evidence).

It is because of the difficulty (and instability) associated with this iterative process that

the following new protocol was established.  

The Hysitron software is employed for the current study, in which a set of real,

experimentally obtained, fused silica indentation traces are analyzed and a calibration is

determined as objectively as possible.  In order to obtain this calibration, a new technique

is developed to try and avoid the intrinsic iterative nature of the calibration protocol

proposed in the original Oliver-Pharr paper and discussed in the previous paragraph.  In

this investigation, the frame compliance is purposefully changed over a range of values,

meant to be both larger and smaller than the expected range of machine compliance seen

for the  instrument.  A new area function is calculated to correspond to each frame

compliance value that was set.  The original fused silica data is analyzed with each

different calibration pair (machine compliance and area function).  The overall objective

of this process is two-fold: (a) to examine the effects of machine compliance on different

aspects of indentation analysis, and (b) to arrive at a correct value of the machine

compliance and thus a correct calibration for the instrument by eliminating the incorrect

calibration pairs through objective measures. 

Indentation tests were analyzed for peak load levels of 0.1, 0.5, 1, 2, 5, 8, 10, 12,

and 14 mN.  The frame compliance C f  was varied from 0 to 4 nm/mN and the effects of

frame compliance on the calibration parameters was examined. 
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Figure 3-3: Raw peak displacement (hmax), sample stiffness (S) and calculated
contact displacement (hc, Eqn. 3-2) for fused silica indentation tests at four different

load levels and six different frame compliance values.  

The effect on the sample stiffness, S, the peak displacement, hmax, and the calculated

contact displacement, hc (Eqn. 3-2) from artificially altering the frame compliance, Cf, is

shown in Figure 3-3 for four indentation tests at different peak load levels (Pmax = 2, 5,

10, 14 mN).  Interestingly, changes in S and  hmax with Cf essentially offset, leaving little

effect on the calculated contact displacement hc.

In contrast, the contact area Ac for each indent (Eqn 3-7),  is proportional to the

square of the stiffness, shown experimentally in Figure 3-4.  For the fused silica

indentation test performed at 14 mN, the calculated area more than doubles from one

million to over two million square nanometers over the range of experimentally-altered

frame compliance values examined in this investigation.  
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Figure 3-4: Calculated contact area (Ac) for fused silica data assuming different
values of the frame compliance (Cf).

The combination of the data from Figures 3-3 hc  and 3-4 Ac  gives the data which is

used for fitting the calibration area function, as shown in Figure 3-5.  An approximate

area function fit is demonstrated here for each frame compliance level with quadratic

polynomial fits (although no experimentalist would consider calculating an area function

from data at only four different peak load levels!)  Using these fits, the simple two-

parameter paraboloid area function (Eqn 3-5) parameters C0  and C1  are themselves

strong functions of frame compliance, as is obvious from the large differences in the

quadratic fits in Figure 4.  The direct dependence of these area function parameters

C 0 ,C1  on the frame compliance C f   is shown in Figure 3-6.  
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Figure 3-5; Hypothetical area function A(hc) fitting for different assumed values of
frame compliance (Cf).  Data are from Figures 3-3 and 3-4.

It is clear that for each different value of frame compliance that was assigned in

the above data, a different area function was calculated for that frame compliance (Figure

3-5).  Thus the full calibration can be thought of as the paired combination of a frame

compliance value and a corresponding area function value.  Since the area function is

calculated by “forcing” the elastic modulus of fused silica is known and constant, any

possible C f – Achc  combination results in data that give the apparently correct value of

elastic modulus when the calibration pair is used on the fused silica data (the same data

from which the calibration was performed) to calculate the elastic modulus and hardness

as though the data were any arbitrary experimental data.  This is demonstrated in Figure

3-7 (left).  At depths of 50 nm and greater, the calculated (reduced) modulus is in

approximately perfect agreement with the “known” value of 69.6 GPa for all assumed

values of the frame compliance.  (The low-depth data typically require some fine-tuning

of the area function and, frequently, the addition of a third term to the area function.)

Therefore the elastic modulus cannot be used to select the correct calibration.  A second

independent measurement is required to establish which of the calibration pairs
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C f – Achc  is the correct calibration.  This is shown in Figure 3-7 (right) where the

contact hardness value is only constant and correct for a single value of the frame

compliance (here ~ 2.5 nm mN-1).  An alternative (better) second measure of the correct

area function-frame compliance calibration is a constant and numerically correct elastic

modulus value for tests conducted on a second material.

Figure 3-6: (left) First term of the calculated area function and its dependence on
the assumed frame compliance value (Cf).  The solid line is at the “perfect” value of
24.5. (right) Second term of the calculated area function and its dependence on the

assumed frame compliance (Cf).

It is also interesting to note the strong dependence of the first term C 0  of the

area function on the frame compliance (Fig. 3-6).  This number appears to provide a a

double-check of the correct calibration: if C0  is substantially different than 24.5  (the

predicted value for an ideal Berkovich indentation tip), something has gone wrong with

the frame compliance calibration.   This internal check of the are function leading term

has worked well in the current system, in that the C0  value is closest to 24.5 for Cf = 2.5

nm/mN, the value in the chosen “correct” calibration pair (based on the contact hardness
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data in Fig. 3-7).  The correct frame compliance value can also be verified by making

SEM measurements of the residual impressions [Doerner and Nix, 1986].  However, this

exercise has demonstrated that it is crucially important to calculate the tip area calibration

function in conjunction with the correct value of the frame compliance.  

Figure 3-7: Calculated reduced modulus (ER) and contact hardness (Hc) as a
function of contact depth (hc) for fused silica using calibration pairs with different

assumed frame compliance values.  The solid lines represent the approximate
known values for ER and Hc for fused silica (70 and 9.5 GPa, respectively).  

3.1.2 Compliant Material Calibration Issues

Many questions regarding indentation calibration and data analysis have arisen as

indentation testing has increasingly been performed on compliant polymer and biological

materials (as opposed to the stiff engineering materials for which these nanoindentation

instruments were designed and optimized).  Two issues specifically relating to compliant
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materials will be discussed in the following section: whether a different calibration

protocol is required, and if there are issues with the fundamental contact mechanics used

in Oliver-Pharr analysis that lead to systematic overestimates of the elastic modulus of

compliant materials. 

3.1.2.1 Calibration Standards for Compliant Materials

A question is raised when indentation testing is being performed on materials

substantially more compliant than those typically used as calibration standards.  For

example, fused silica and aluminum both have elastic modulus values near 70 GPa, while

most polymeric materials have modulus values around 5 GPa or (much) less, depending

on the material and glass transition temperature.  Bone and dentin have modulus values

in the range from 10-30 GPa, which has resulted in discussion of potential alternative

calibration standards for indentation of compliant materials [Chang et al, 2003b].  There

is no widely accepted polymer standard for indenter tip calibration; a polymer would be

extremely difficult to use as a standard due to the intrinsic time-dependence of the

material and the effects of this time-dependence on indentation response (to be discussed

further in Chapter 4).  

As discussed above, the area function used to describe the tip-sample contact is

typically described with the form of Eqn. 2-8, of which Eqn. 3-4 is a truncated form.  For

comparison of my own MTS-machine function I will include a third term here, such that

the area function is:

A hc=C 0 hc
2C1 hcC 2 hc

1/2
[3-8]

This sum for the contact area is plotted in Figure 3-8 for approximate values of the

calibration constants employed in the current work (C0 = 24.5, C1 = 800, C2 = 2000)

along with each term separately.  
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Figure 3-8: Plot of the complete area function A(hc) and the individual component
terms (see Eqn. 3-8) for an experimentally-observed area function.  The sum is

influenced by the h and h1/2 terms at small depths (hc < 200 nm) but is dominated by
the h2 term at large depths.

As is apparent from the plot, the C1 and C2 terms are dominant at small contact

displacements, but make almost no contribution to the sum at depths of about 200 nm and

greater.  Therefore, for indentation loads sufficiently large to cause the total indentation

contact depth to be on the order of 1 µm or more, the first term of the area function is

dominant in determining the contact area.  The smaller the elastic modulus of the

material, the larger the contact depth at fixed load, such that the odds of achieving an

indentation depth of 1 µm or more at a reasonable (noise-free) nanoindentation load level

are improved.  However, it is useful to recall the differences in indentation displacement

measurement hardware and ranges associated with different commercially-available

indentation instruments (section 2.1.6 above); for large indentation depths (> 2 µm) the
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Hysitron instruments are unsuitable.  

From a tip calibration perspective, then, for compliant (and soft) materials it is

important to determine an accurate value of the C0 term in the tip area function since this

is the only term that bears on the contact area calculation.   However, a value of 23 or 26

for C0 gives a calculated contact area only 6% different than that calculated for C0 = 24.5!

The implications for indentation of compliant materials are apparent: the choice of an

idealized area function

A hc=24.5hc
2

[3-9]

is acceptable for most testing, particularly for indentation depths of a micrometer or

more.  

3.1.2.2 Oliver-Pharr Analysis and the Contact Displacement

Although there is no question that the introduction of Oliver-Pharr analysis has

made an enormous impact on mechanical testing in the last decade, the method itself is

probably applied more broadly than is warranted.  It has been noted that the indentation

modulus of polymeric materials is frequently larger than the modulus of the same

materials measured in uniaxial tension or compression [Moody et al, 2002] .  The

modulus is also frequently not constant, as shown below in Figure 3-9 for Berkovich

indentation of PL-1 polymer using the CSM technique (section 2.1.6.1) to record

modulus as a function of depth.  The dashed line is the known elastic modulus of the

material (provided by the manufacturer, Measurements Group, Raleigh, NC) after

conversion from plane strain modulus using the known value of Poisson's ratio (ν).  Εven

at depths of more than 5 µm the CSM (indentation) modulus is larger than the elastic

modulus measured in tension.  
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Figure 3-9: Depth-dependence of the elastic modulus (E) of a polymer (PL-1) as
measured by nanoindentation.  The dashed line (2.9 GPa) is the approximate tensile

modulus of the polymer, demonstrating the modulus overestimation frequently
associated with conical-pyramidal nanoindentation.   

There are both physical and mechanical factors that could be implicated in this

discrepancy between indentation and homogeneous modulus measurements:

• physical aging of the polymer surface due to oxidation or other chemical mechanisms

could be associated with changes in the surface mechanical properties, and those,

rather than the bulk values, are the properties which are measured by nanoindentation

• time-dependence in the polymer mechanical response could be affecting

measurements (this will be addressed in detail in Chapter 4)

• effects such as “pile-up” and “sink-in” which are associated with plasticity and cause

errors in the estimation of contact depth, hc, from displacement, h.  (This topic has

been previously discussed in indentation analysis of elastic-plastic systems,

particularly in the context of work-hardening metals [Cheng and Cheng, 2004])
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To address this last point within the context of polymers, an examination of the

contact depth hc, and how this differs from the total displacement, h is needed.  The

elastic solution for conical indentation gives:

P=
 tan

22
E

1−2
h2 [3-10]

where the factor γ relates the contact depth (hc) to the total displacement (h):

= h
hc
=

2

[3-11]

for an elastic half-space [Sneddon, 1965].  For purely elastic indentation, Eqn. 3-10 can

be used to directly fit the indentation data and estimate the elastic modulus .  However, as

demonstrated in chapter 2, there is substantial plastic deformation associated with pointed

indenter tips, such that the elastic displacement is not known independently and the

Oliver-Pharr calculation of hc  is done using the peak load and unloading stiffness

Pmax , S  to estimate the elastic displacement, since the indentations are elastic-plastic,

not elastic; the factor γ is embedded in this analysis and is fixed at =/2 .  If the value

of γ present during the elastic-plastic experiment was substantially different than the

known elastic value, this would appear as an error in the perceived elastic modulus of the

material as measured using Oliver-Pharr analysis.

In elastic-plastic indentation experiments, it has been noted both by direct

measurement and by finite element calculations that the experimental value of γ may in

fact differ from π/2.  It has been noted [Thurn et al, 2002] that experimentally measured γ

was closest to ideal (π/2 = 1.57) for extremely stiff sapphire (E ~ 440 GPa), and then

decreased for materials with smaller modulus (stiffness) values.  The γ value was about

0.9 for NaCl, which has modulus of ~38 GPa.  A similar finding was reported for
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amorphous Selenium [Shimizu et al, 1999]  in which the authors concluded that

experimentally the value of γ is approximately unity.  

There are two ways that a material with ≠/2  could cause problems in

quantitative nanoindentation measurements.  First, calibration of the tip area function

requires  a “well-behaved”  material with a γ of π/2.  It is partly for this reason that

calibrations are undertaken using stiff glass and ceramic materials as the calibration

standards. The use of a calibration material with an unexpected γ, as in many soft metals

and polymers, would result in numerical errors in the area function when attempting to

then use this area function to measure properties in a material with the correct γ.

Attempts to “force” the area function to conform to a uniaxial tension elastic modulus

[Chang et al, 2003b] are intrinsically error-ridden, due to time-dependence in the polymer

and the outstanding lack of certainty associated with the overestimation of polymer

modulus values frequently observed.  This topic will also be further discussed in section

3.2.2 below, in which the data published previously with a forced polymer-based area

function are corrected and found to be in agreement with the existing literature and

independent measurements using the same sample and a different indentation instrument.

Since calibrations are typically carried out with stiff glass and ceramic materials,

this issue would help explain why the Oliver-Pharr modulus values for many polymers,

even after accounting for time-dependent effects, are overestimated in nanoindentation.

An alternative model for time-dependent indentation data analysis, in which γ is taken to

be 1, results in modulus values closer to the known modulus for polymers such as PL-1

(Figure 4-15).  This model (and these PL-1 polymer data) will be discussed later, within

the context of time-dependence in Chapter 4.  It is interesting to note, however, that the

difference in modulus values obtained at different depths remains.  

The deviation of γ from π/2 is theoretically not due to viscoelastic effects.  It has

been shown that the elastic γ is equally applicable to viscoelastic problems, and this has

been confirmed by recent finite element analysis on conical indentation in a viscoelastic

medium [Cheng and Cheng, 2004].  However, problems with γ arise in elastic-plastic

87



deformation due to the plastic component of the deformation, and therefore the same

plastic-based issues with this factor could arise in viscous-elastic-plastic problems. 
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3.2 Elastic-Plastic Bone Indentation 

Having critically examined indentation calibration and issues for compliant

materials, the technique will be applied (using Oliver-Pharr analysis) to elastic-plastic

indentation testing and analysis on mineralized tissues, mainly bone.  A brief overview of

a large healing bone study, from which samples will be used in several different portions

of this work, is presented. 

3.2.1 Bone-Dental Implant Study Methods

Healing bone samples adjacent to a dental implant interface were the focus of

several aspects of the current work, as well as one previously published study [Chang et

al, 2003b].  In the study, the 4th premolars of six 2-year-old Sinclair miniswine were

unilaterally removed surgically and a titanium dental implant was inserted in the alveolar

ridge seven months after the extraction.  The implants were shielded from bite forces and

left in place for one month (two animals), two months (two animals) or four months (two

animals) prior to animal sacrifice.  Three bone samples adjacent to the screw-implant

(Figure 3-10) were harvested embedded in polymer resin (PL-1, Vishay Micro-

Measurements, Raleigh, NC).  The samples were sectioned 1-2 mm thick, and

sequentially polished to 0.05 µm using standard metallographic techniques, to prepare the

surfaces for indentation testing.  The samples were stored frozen until indentation testing

was performed, and returned to the freezer between studies.

Different groupings of these same samples will be examined in portions of the

current work:

i. In section 3.2.2, one-month healing samples indented with two different instruments

will be compared.  The original (Hysitron) study uses samples 1-3 of both one months

animals and was published previously [Chang et al, 2003b]; the original result appears

in Figure 3-11.  The data were re-analyzed following calibration and compared with

new experiments using the MTS instrument.  The new MTS study uses one sample
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each from the two animals at one month healing time, sample (1) from one animal and

sample (2) from the other.

ii. In section 3.2.3, all samples (1)-(3) at all healing time points (1, 2, 4 months) are

examined after recalculating the data following the recalibration discussed above in

part (i).  The original experiments were performed on the Hysitron instrument.  

iii. In section 3.3.2, one sample (1) from one month healing (as used in part (i)) is used to

demonstrate load-dependent indentation variability

iv. In section 3.4.2, the (1) sample from one animal each at one, two and four months is

used to demonstrate nanoindentation modulus mapping in two dimensions.  The  1-

month specimen used is different than those used in parts (i) and (iii) of this listing.

v. In section 4.1.2 the time-dependence of indentation responses in a 2-month (1) sample

are demonstrated.  This is the same sample as in part (iv) of this listing.

vi. In section 4.4.2 the MTS experiments from part (i) of this list are re-examined within a

time-dependent indentation framework.  Further analysis of this same experiment

appears in sections 4.4.3 and 4.5.3.

Figure 3-10: Three bone samples, designated (1)-(3), were harvested from bone
along the dental implant interface for each animal.
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Figure 3-11: Plane strain modulus (E') vs distance from the bone-implant interface
for one month healing [from Chang et al, 2003b]

3.2.2 Effect of Instrument and Calibration

It became of practical interest to verify that there was no possibility for machine-

based and calibration-based differences in indentation elastic-plastic mechanical

properties obtained using different nanoindentation instruments.  The mineralized tissue

nanoindentation studies (performed by myself) reported in the current work were done

using an MTS Nanoindenter XP instrument.  Indentation tests on the same series of bone

samples were done previously with a Hysitron Triboscope and preliminary results for one

month bone healing were published [Chang et al, 2003b].  In the published study, a novel

polymer-based indenter tip calibration was used along with the Hysitron instrument.  

Values for the indentation modulus and contact hardness in porcine healing bone

(reported in [Cheng et al, 2003b])  were at the extreme low end of the range of values

previously seen in other bone indentation studies [Turner et al, 1999; Zysset et al, 1999].
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For example, the average modulus value in Cheng et al was 8.4 GPa, and the average

contact hardness was 0.2 GPa.  Elastic modulus values for dry human cortical and

trabecular bone ranged from 16 to 24 GPa in one nanoindentation study [Turner et al,

1999].  Contact hardness values for wet human bone ranged from 0.23 to 0.76 in another

study [Zysset et al, 1999] and in this same study modulus values ranged from 7 to 25

GPa.  Several differences were present between these sets of data, including the bone

source species, indentation instrument and testing conditions.  It was desirable to

eliminate the potential for machine- and calibration-based differences between the

protocols in order to establish if the lower modulus and contact hardness values seen in

Chang et al [2003b] were due to the bone status, species, or other unknown differences. 

A series of indentation tests were performed on two bone samples with 1-month

healing time, using the MTS Nanoindenter XP instrument.  Indentation loads were

comparable to those used in the original study (6 mN for Hysitron vs 10 mN for MTS)

although spacing between individual indentation tests was different (15 µm spacings for

the Hysitron, ~ 100 µm spacings for the MTS).  The bone samples were tested dry

instead of hydrated, as there is no easy mechanism for sample submersion on the base

model NanoIndenter XP.  (Samples were soaked prior to Hysitron testing in the original

study but were not kept submerged; there was in fact potential for evaporation and

dehydration during the test.)  The average experimental modulus for the new data

(obtained using Oliver-Pharr deconvolution) was found to be 17.9 GPa and the average

contact hardness was 0.5 GPa.  The effect of hydration in bone indentation testing has

been documented at 25% [Rho et al, 1997; Ferguson et al, 2003], and thus could not

explain the factor of approximately two in the comparison of the published data with the

current study.  The Hysitron data were therefore examined more carefully.

The polymer-based calibration protocol used in the original (Hysitron) study

[Cheng et al, 2003b] could not be eliminated as a potential factor in this large

difference, nor could improperly set values of the frame compliance.  As was discussed

in section 3.1.2.2 above, the modulus of polymeric materials is frequently overestimated

using nanoindentation techniques.  Therefore, “forcing” a modulus value for a polymer
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(as was done in the original Cheng et al study) would result in dramatic overestimation of

the contact area, which in turn would result in underestimated numerical values for E' and

Hc when testing unknown samples.  

After re-calibrating the indentation tip area function using the standard calibration

protocol and modulus “forcing” to fused silica values (as per section 3.1.1 above) the

Hysitron data for bone with 1-month healing was found to have an average modulus

value of E' = 12.9 GPa, Hc = 0.4 GPa, much closer to previously published values for

bone [Turner et al, 1999; Zysset et al, 1999].  The old (e.g. From Fig. 3-11 as originally

published) vs new (recalculated after the recalibration) modulus values for the Hysitron

experiment 1-month healing data are shown in Figure 3-12 below.  Not only did the

average increase by about 50%, but the range of experienced values increased (20

compared to 12 GPa), again in better agreement with other experiments published

previously on hydrated bone [Zysset et al, 1999].   

Figure 3-12: Plot of 1-month healing bone plane strain modulus (E') from the
original indentation study (Figure 3-11) versus modulus following re-calibration of
the Hysitron instrument tip area function.  Both the numerical values themselves

and the range of observed values increased as a result of the calibration.  

The recalibrated modulus data from Figure 3-12 is shown as a function of distance

from the bone-implant interface in Figure 3-13.  The data from the new MTS experiments
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on the same samples are also shown in Figure 3-13 (left) and the modulus values are

larger on average (MTS: E' = 17.9 ± 4.4 GPa; Hysitron: E' = 12.9 ± 3.6 GPa).  However,

if the MTS modulus values are decreased by 25%, to approximate the effect of dry vs wet

samples [Rho et al, 1997], the data are approximately equal in average (MTS adjusted for

hydration E' = 13.4 GPa) and overlap on the plot versus distance (Figure 3-13, right).

The scatter in values is approximately the same for both machines as well.

Figure 3-13: (left) Plot of plane strain modulus (E')versus distance from the bone-
implant interface for the same 1 month bone samples tested with a Hysitron

instrument (peak load 6 mN, Figure 3-11) and an MTS instrument (peak load 10
mN). (right) same data after MTS machine values were scaled to 75% their original
values to approximate a change from dry to wet testing conditions.  Experimental

data from the two machines now agree well both in value and in scatter. 

This result clears the way for further studies of these samples using the MTS

instrument, in that the results appear to be quantitative and in agreement with the

previous study.  In addition, the Hysitron results will be re-analyzed with the new

calibration and examined for comparison with the new (MTS) studies. 
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3.2.3 Effect of Bone Healing Time 

The newly calibrated tip area function was used to re-analyze the Hysitron

indentation data for porcine bone at healing times of 1-, 2-, and 4-months post-implant

(These original indentation experiments were performed previously by C-C Andy Liu but

are presented here following this crucial re-calibration for comparison with the new MTS

experiments done on the same samples later in this chapter.)  Modulus data showed

substantial scatter (Figure 3-14) and a subtle trend towards increasing modulus with

increased distance (d) from the bone-implant interface.  The contact hardness data

showed a similarly large degree of variability and a similar, perhaps even subtler, trend

with respect to distance from the implant interface (plot not shown).  

Figure 3-14: Plot of modulus (E') versus distance from the bone-implant interface
for Hysitron indentation tests at 1, 2, and 4 months.  The scatter is large, slightly
obscuring the apparent trend toward increased modulus at greater distance from

the interface.  The trend lines for each data set are shown.

 

These data demonstrate a slight increase in both plane strain modulus and contact
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hardness for four month healing compared to one month healing (Table 3-1).  The data

for two month healing appear to be, on average, even greater than those for four month

healing.

Table 3-1: Mean values and standard deviations for plane strain modulus (E') and
contact hardness  (HC) at one, two and four months bone healing time.  

Healing Time Plane Strain Modulus,E'
(GPa)

Contact Hardness, Hc

(GPa)
1 month 12.9 ± 3.6 0.41 ± 0.14
2 months 16.3 ± 4.4 0.55 ± 0.16
4 months 15.5 ± 4.3 0.48 ± 0.14

Statistically, because of the extremely large number of individual test values

(more than 500 individual indentations for each time-point), the data in Table 3-1 are all

significantly different by one-way ANOVA with multiple comparisons (with the factor of

healing time).  However, it would be very difficult to defend the differences as physically

significant, given the large standard deviations and large scatter in the measurements.  

Histograms were generated for the modulus data shown in Figure 3-14 to examine

the distribution of modulus values as a function of healing time.  The modulus values

were found to vary widely in these experiments, but were approximately normally

distributed (Figure 3-15).  

Based on the wide variation seen in these results, any trend in healing bone with

either time (1, 2, 4 months healing) or distance (d) from the implant interface is to some

degree obscured by the substantial variability in point to point mechanical properties

obtained via indentation testing.  It was hypothesized, based on these results at 6 mN

peak load, that the indentation responses were variable due to the small length-scales of

the indentation test relative to the ultrastructure of the bone tissue itself.  Therefore an

examination of load-level (and in term length-scale) variability in indentation of

mineralized tissues composites was undertaken.
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Figure 3-15: Frequency histograms for modulus (E') values at different time points
after bone healing for 1, 2, and 4 months. 
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3.3 Nanoindentation Variability Experiments 

Large variability was seen in the bone indentation experiments presented in the

previous section.  The indentation tests in that experiment were conducted at 6 mN.  It

was desired to examine the variability in bone and related materials as a function of

indentation peak load level, to try and eliminate sources of experimental variability due

to the selection of testing parameters and establish a continuum-level single-valued

elastic modulus for the composite materials being examined.  Indentation experiments

were thus conducted over a range of peak load levels on homogeneous materials and on

natural mineralized nanocomposite materials. 

3.3.1 Homogeneous Controls

Experiments were performed to examine local length-scale effects in

nanoindentation.  First, smooth and homogeneous fused silica (the calibration standard)

was used as a control to establish the potential magnitude of artifacts such as

instrumentation variation at different length-scales and the effect of sample preparation,

particularly the polishing of the surface. 

Nanoindentation tests were performed on an MTS Nanoindenter XP (MTS

Systems Corp., Eden Prairie, MN) with a Berkovich  pyramidal tip.  Single load-unload

triangle-wave loading cycles were performed using constant loading-rate tests to peak

loads of 1, 10, and 100 mN at a fixed rise time of 30 seconds (8 tests per peak load).

Plane strain modulus (E') was deconvoluted from load-displacement responses using

typical elastic-plastic techniques [Oliver and Pharr, 1992].  
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Figure 3-16:Raw indentation load-displacement (P-h) responses  for fused silica
tested at three different peak load levels.

The raw load-displacement (P-h) traces for the fused silica indentation tests at 1,

10, and 100 mN are shown in Figure 3-16.  Two things are immediately apparent from

the data: the shape of the response is conserved at different peak load levels, due to the

effect of geometric similarity of the Berkovich indenter tip, and the responses superpose

and demonstrate little variability at any load level.  This is reflected in the modulus data

deconvoluted from the traces using Oliver-Pharr analysis; the modulus data are constant

in value and show little variability in terms of total range of values (Figure 3-17).  The

diminishing range of modulus values with increasing indentation peak load level is

reflected in the raw data in Figure 3-16 in that the line widths used in the plots were

identical so the broader lines at 1 mN reflect small variations in the responses.  These

data have been plotted with an elastic modulus range of one order of magnitude, for

comparisons of the variability in responses for materials with different baseline elastic

modulus values in the following sections.  
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Figure 3-17: Elastic modulus (E) data (from Oliver-Pharr deconvolution)  as a
function of indentaion peak load (Pmax) for  for the fused silica indentation tests

shown in Figure 3-16.  Modulus values for each individual test are shown as a single
point in the plot.

A second homogeneous control with direct relevance to the current study was

examined.  Single-crystal (gem-quality) mineral apatite (fluoroapatite) was also acquired

(Marin Mineral Company, sample obtained from Cerro de Mercado, Durango, Mexico).

The sample was sectioned and polished for indentation analysis.  Modulus data as a

function of indentation peak load are shown in Figure 3-18.

Figure 3-18: Plane-strain modulus (E') data (from Oliver-Pharr deconvolution)  as
a function of indentaion peak load (Pmax) for single crystal mineral apatite   
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3.3.2 Biological Composites

Mineralized composite biological tissues were next examined within this

framework of indentation length-scale variability.  Porcine bone samples were used, as

described in section 3.2.1; indentation tests were located on the alveolar cortical bone.

Tooth cross-sections were made by sectioning extracted 3rd molars in the transverse plane

to expose dentin and enamel, and wet-polishing the surface in a manner similar to that

used for the bone samples discussed in section 3.2 above.  All bone and tooth samples

were stored frozen until testing and were tested in ambient conditions (e.g. dehydrated).

Elastic plane strain modulus-indentation peak load (E'-Pmax) data is shown in

Figure 3-19 for bone and in Figure 3-20 for the mineralized tooth tissues.  Interestingly,

considering the similarities in composition for bone and dentin, there was a substantial

difference in the degree of variability seen in the indentation responses.  The enamel was

even less variable than the dentin at small depths. 

Figure 3-19: Variability in bone indentation modulus (E') at different peak load
levels (Pmax).
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Figure 3-20: In contrast to bone (Fig. 3-19 above) there is relatively little variability
in indentation modulus (E') of mineralized tooth tissues tested at different peak load

levels (Pmax).

3.3.3 Summary of Indentation Variability 

Indentation responses of homogeneous materials, fused silica glass and mineral

gem-quality apatite, were uniform even at very small indentation peak load levels and

depths (Figures 3-17 and 3-18) .  Interestingly, the composite materials in tooth, dentin

and enamel, are also relatively uniform in response, even at small indentation length

scales (Figure 3-20).  The bone samples, in contrast, were variable at all peak load levels

(Figure 3-19).    

The data in Figures 3-17 to 3-20 are tabulated for quantitative analysis in Tables

3-2 for small load levels and 3.3 for large load levels.  The mean and standard deviations

are used to calculate the relative variation (coefficient of variation, COV) for each

material at small and large load levels.  Several interesting trends emerge from this

calculation.  At small load levels, for homogeneous materials (fused silica and mineral

apatite) there is a degree of intrinsic variability, attributable to the instrumentation at such

small (nm) length-scales.  Interestingly, the data for biological composite tooth tissues
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are comparable in variability to the homogeneous materials at both small (Table 3-2) and

large (Table 3-3) load levels.   

There was a dramatic variability in the bone data for variability, both at small

indentation loads (Table 3-2) and at larger indentation loads (Table 3-3), such that the

bone tissues were uniquely and substantially variable at all length scales tested.  The

bone variability can therefore be considered “real” and not due to artifacts of machine (by

comparison with homogeneous materials) or of sample preparation (by comparison with

similarly-prepared tooth tissues).  

Table 3-2: Small-depth (Pmax = 0.1 or 1 mN)  indentation modulus variability (data
from plots 3-17 to 3-20)

*Peak Load
level, Pmax and

mean peak
depth, hmax

Mean Plane
Strain

Modulus,  E ' 

Standard
deviation (SD)

Percent
Coefficient of

Variation
100% E ' /SD

Fused Silica 1 mN
87 nm 69.39 4.64 6.7

Mineral apatite 1 mN
71 nm 166.28 26.84 16.1

Enamel 1 mN
90 nm 117.06 11.75 10.0

Bone 0.1 mN
131 nm 14.32 8.23 57.5

Dentin 0.1 mN
62 nm 27.76 4.33 15.6

* peak load levels differed for the different materials to keep the mean peak depths approximately
equal—since the tests are carried out in load-control, the peak depth at fixed load level is smaller
for stiffer materials
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Table 3-3: Large-depth (Pmax = 100 mN)  indentation modulus convergence for
variability studies  (data from plots 3-17 to 3-20)

Mean Plane Strain
Modulus,  E ' 

Standard deviation
(SD)

Percent Coefficient
of Variation
100% E ' /SD

Fused Silica 70.04 0.65 0.93
Mineral apatite 155.25 3.73 2.4

Enamel 113.83 4.58 4.0
Bone 18.51 2.36 12.7

Dentin 29.15 0.94 3.2

Based on the similarities in composition between dentin and bone, it is a bit

puzzling that the results are so dramatically different.  The result directly implicates local

structure and organization of the mineral phase as being different in bone and dentin, as

will be discussed further in later chapters of this work.  However, regardless of the source

of the variability, the implications of this experiment are quite clear.  Due to the dramatic

scale of indentation variability in bone, clearly tests should not be performed at small

indentation loads or length-scales.  In fact, based on the diminishing variability of bone

with increasing indentation load level (and corresponding increased length-scale),

indentation measurements in bone should be carried out at load levels as large as is

practicable.  
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3.4 Property Mapping

Having demonstrated in many different ways that the indentation responses of

bone are variable, especially at small loads, a new technique was developed to map out

material properties across a sample and allow for correlation of properties with

microstructural features.  The indentation experiments were performed at large peak

loads (Pmax = 100 mN) to minimize any variability effects due to surface preparation,

individual discrete elements such as mineral particles, and to try to obtain a near-

continuum mechanical response for each location.  The mapping experiments were

performed on a tooth cross section, as a control to establish the technique, as well as three

bone samples (one each for one, two, and four months healing time as discussed in

section 3.2.1).  The bone and tooth samples underwent identical sample preparation,

storage, and testing protocols.     

3.4.1 Mapping the Dentin-Enamel Junction

The dentin-enamel junction is an abrupt transitional region between two tissues

with dissimilar compositions and elastic modulus values.  Therefore, this DEJ region was

used as a control to establish a technique of quantitative elastic modulus mapping via

indentation testing.  Crucial to this mapping technique is the registration of optical and

mechanical information on the same composite image.   

Fourteen lines of indentation tests were conducted across the DEJ in one quadrant

of single tooth cross-sectional sample (Figure 3-21).  Indent spacings were 100 µm in the

x-direction (approximately perpendicular to the DEJ) and 100-200 µm in the y-direction

(between lines of indents).  Indentation conditions were peak load Pmax  = 100 mN and

tR  = 33 seconds (rate k = 3 mN s-1).  Optical images (160 x 120 pixels, corresponding to

a sample region 600 µm by 400 µm) of the indented regions were captured in situ

(following the indentation tests) and indenter stage coordinates were recorded for each
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captured image.  Adobe Photoshop “photomerge” feature was used to join the captured

images into a single optical micrograph image of the indented region (Figure 3-22).  

Figure 3-21  Cross section photograph of a tooth (3rd molar) illustrating the
indented region of the dentin-DEJ-enamel transition region.   The dentin and
enamel tissues are clearly differentiable by color but the sample is otherwise

featureless and homogeneous in appearance.

Figure 3-22:  Composite image of the indented area, constructed from 130
overlapping images obtained through the nanoindenter positioning optics.

Interference fringes are visible in this composite image due to the relative lack of
features in the images, and thus the difficulty registering the images precisely.  

Raw indentation load-displacement (P-h) traces for one (x-direction) row of

indentation tests are shown in Figure 3-23.  The data can be clearly grouped and

identified as indentation tests on dentin and enamel.  There is more variation in the dentin
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responses than in the enamel responses, but not much variation in either set of

indentation curves.

Indentation plane strain elastic modulus, obtained via Oliver-Pharr elastic-plastic

analysis, was plotted as a map in two dimensions (Figures 3-24).  The map was colorized

for easier viewing and matched to the optical composite image (Figure 3-22) using the

stage coordinates for the collected optical images and indentation tests.  The visible

residual indentation impressions in dentin also assisted in verification of the registry of

optical and mechanical images.  The optical-mechanical map, consisting of the modulus

mapped onto the optical image of the sample, is shown in Figure 3-25.              

Figure 3-23:  Raw indentation load-displacement (P-h) traces  for one row (x-
direction line) of indentation tests performed across the dentin enamel junction.

The elastic modulus maps illustrate clear differences between the dentin and

enamel (Figures 3-24 and 3-25).  An intermediate zone lying directly on the DEJ showed

modulus values intermediate to the dentin and enamel values; these values likely reflect

the indenter tip physically touching both tissue types as they are located directly on the

boundary (Figure 3-25).  A near-junction region, with slightly depressed elastic modulus

values in the indents closest to the DEJ, was also observed in the dentin (most clearly

visible in the composite image, Figure 3-25).
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Figure 3-24 Plane strain elastic modulus (E') map of the dentin-enamel junction.
Each colored square corresponds to the modulus value from one indentation test

performed in that location.  The dentin is clearly distinguishable from the enamel.

Figure 3-25 Plane strain elastic modulus (E') overlay map of the dentin-enamel
junction.   The modulus information from Figure 3-24  has been converted to color
(for easier viewing) and mapped onto the composite image of the DEJ (Fig. 3-22)

using the indentation residual impressions to match the images.  
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Having developed a technique for modulus mapping, and illustrating its use on a

reasonably well-understood structure, the technique will next be applied to the analysis of

bone tissues in the region near a bone-implant interface.  This technique is advantageous

in that the mechanical information and optical images are collected together, using a

single set of physical stage coordinates from the indentation device (an MTS NanoXP, in

this case), to allow for accurate placement of the indentation mechanical properties data

on the corresponding optical composite image of the tissue, as was demonstrated above

for the DEJ.

3.4.2 Bone Modulus Mapping

To assess spatial variation in healing bone mechanical response, arrays of

indentation tests were run on the healing bone samples discussed above (section 3.2.1)

and in Chang et al [2003b].  Elastic modulus was mapped over a large region of three

samples, one each for one, two and four months bone healing time following

implantation of a dental implant.  The indentation arrays were rectangles with inter-

indent spacings of 100 µm in both the x- and y- directions.  Total array sizes were no

smaller than 1.2 mm by 1.2 mm and originated along the bone-implant interface.

Indentation conditions were peak load Pmax  = 100 mN and tRISE  = 33 seconds (loading

rate k = 3 mN s-1).  

Raw load-displacement (P-h) responses for a single row of indentation tests on

one sample are presented in Figure 3-26.  The data show substantial variability, in stark

contrast to the comparable data shown for dentin (Fig. 3-23).
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Figure 3-26:  Raw indentation load-displacement (P-h) traces  for one row (x-
direction line) of indentation tests performed on a healing bone sample.  

The procedure for generating the optical-mechanical maps was identical to that

done for the DEJ (section 3.4.1 above): optical images of the indented regions captured

in situ were used to generate a composite image of the indented region.  Indentation

elastic modulus (obtained via Oliver-Pharr analysis) was mapped onto the optical images.

For each experimental specimen (one each at one, two four months bone healing time)

three images are presented in the following figures: (a)  the composite optical image of

the specimen, (b) the plane strain elastic modulus map, and (c) the combined optical-

mechanical map.  

In cases where the indentation test location was clearly (based on both the optical

and mechanical information) on the polymeric embedding resin instead of the bone, the

symbol has been changed from a square to a circle and these points have been excluded

from further data analysis.  (These circles all correspond to modulus values of 7.5 GPa or

less, associated with the polymer with a modulus of 4-5 GPa.)  In some locations, no

square symbol is presented on the image; in this case, the indentation test failed to run

and that location and no mechanical information is available.  

These images will be further discussed en masse following presentation of the

three sets of images.
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Figure 3- 27 (a): Composite optical image for bone specimen following one month
healing after implantation of a dental implant.  The bone-implant interface is along

the left-hand side of the image.

Figure 3-27(b):Plane strain elastic modulus map for 1-month sample in 3-27(a).
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Figure 3- 27(c): Overlay image of the combined optical and mechanical information
contained in parts (a) and (b)
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Figure 3- 28 (a): Composite optical image for bone specimen following two months
healing after implantation of a dental implant.  The bone-implant interface is along

the left-hand side of the image.

Figure 3- 28(b):Plane strain elastic modulus map for 2-month sample in 3-28(a).
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Figure 3- 28(c): Overlay image of the combined optical and mechanical information
contained in parts (a) and (b)
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Figure 3- 29 (a): Composite optical image for bone specimen following one month
healing after implantation of a dental implant.  The bone-implant interface is along

the left-hand side of the image.

Figure 3-29(b):Plane strain elastic modulus map for 1-month sample  in 3-29(a).
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Figure 3-29(c): Overlay image of the combined optical and mechanical information
contained in parts (a) and (b)
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The bone specimens contained more optically-resolvable features than the DEJ

sample described previously (Section 3.4.1) and the composite optical images were both

easier to generate using Adobe photomerge and contained fewer interference fringes.  In

addition, the indentation residual impressions are clearly visible on the bone specimens,

and are larger than in dentin due to the smaller values of modulus and hardness, making

the registry between optical and mechanical images even simpler than in the DEJ study.

There are gaps in the information where an indentation test did not successfully

run.  Ironically, this problem is a known issue with the automation of the indentation

instrument, and is the direct result of the variability of the bone sample.  This is evident

by the fact that there were few gaps in the DEJ map.  There are instrument adjustments

that can be made to increase the “success rate” for indentation locations, but these

adjustments increase the total period of time required to generate a modulus map by

increasing the amount of time required to perform each test.  Each set of modulus results

in the maps of Figures 3-27 to 3-29 took approximately 48 hours of block-running

nanoindentation machine time to acquire.  For a biological tissue at room temperature,

the possibility for degradation in the material with longer testing time frames cannot be

ignored, although this does not appear to be the case in the data presented here (no

systematic trend for modulus with y-direction distance is apparent in the maps).  Thus,

there is a trade-off in this technique, in that a higher “success rate” requires a longer time

to acquire the property map.    

In the two-month healing bone sample (Figure 3-28), the indentation array was

inadvertently started a small distance away from the bone-implant interface, and no

indentation tests were run on the bone that was positioned directly between the dental

implant screw threads.  Future studies will aim to replicate the data shown for four-month

healing (Figure 3-29) in which the array covered the implant interface region completely.

This does, however, come at the expense of “wasted” indentation tests that lie on the

polymer embedding resin in the interface vicinity.   

There were some interesting correlations between the elastic modulus data and

features in the bone.  Clusters of very low-modulus results were frequently observed in a
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region clearly differentiable from the surrounding bone, typically darker in the optical

image.  Overall, modulus data from directly adjacent tests were frequently comparable,

and the largest variations were over a distance larger than the 100 µm indent spacing.

However, there was no blindingly obvious trend in modulus with distance from the

implant interface in any of the samples.

A histogram is presented in Figure 3-30 for the modulus information contained in

the three images 3-27 to 3-29.  In contrast to the histograms presented earlier (Figure 3-

15) for a larger group of samples at each time-point (including these three samples), the

data from the current investigation were not well-described by a normal distribution.  

The results in section 3.2.2 for a different series of MTS nanoindenter tests on two

different 1-month dry bone samples showed an average modulus of 17.9 GPa, in good

agreement with the current average 17.2 GPa at 1-month healing.  However, and also

quite interestingly, the mean modulus values for the current study demonstrated an

opposite trend to that seen in the previous Hysitron study on these same samples (Figure

3-15).  In the previous study, the 1-month data are depressed compared to the 2- and 4-

month data.  In the current study, the 1-month data are, on average, elevated compared to

the  2- and 4-month data.  However, since the bottom line continues to be that there is

large variability in the indentation modulus of bone, it is difficult to discern if this trend

is real or is merely a sampling error.  
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Figure 3-30: Frequency histograms for modulus (E') values after bone
healing for 1, 2, and 4 months (data from Figures 3-30 to 3-32). 

The mapping technique developed here, if used over large regions of many more

samples from this bone study, may be what is required to better understand the overall

picture.  At this point, it is still unclear  if these samples demonstrate trends in elastic

modulus with distance from the bone-implant interface, or trends in bone modulus with

increased healing time.    
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3.5 Discussion

The focus of this chapter has been on elastic-plastic analysis in indentation

testing.  The Oliver-Pharr analysis for conical-pyramidal indentation in elastic-plastic

solids is extremely popular, especially since the analysis is built directly in to

commercially available indentation testing instruments (including both of those described

in section 2.1.6 of this work).  For large scale analysis of samples, such as the property

mapping performed here in section 3.4, the use of an automated instrument and the built-

in elastic-plastic analysis results in extremely quick and effective materials property

determination compared to traditional testing modalities.  The probe-based technique,

allowing for individual measurements to be made at 100 µm centers, presents interesting

opportunities for gaining information about the local structure-properties relationships in

inhomogeneous materials, such as mineralized biological tissues.

In order to gain quantitative information from indentation testing, the tip area

calibration is extremely important.  However, interestingly enough, the calibration for

performing tests on compliant materials is a bit more forgiving than that required for

stiffer materials, as the total displacements are large relative to any blunting in the tip

(that is characterized by area function coefficients C1, C2, ...).  A perfect tip assumption

(C0 = 24.5, C1 = C2 = ... = 0) is probably acceptable for large-depth indentation testing,

and is certainly preferable to error associated with incorrect calibration techniques.  The

issues that arise in the tip calibration are somewhat machine-manufacturer dependent, but

it was demonstrated in this work that with appropriate calibration (and an approximation

for the difference between wet and dry samples) the indentation results from different

machines are in fact comparable (section 3.2.2).    

Variability in indentation responses can be assessed by examining point-to-point

variations at different peak load (and corresponding peak depth) levels (section 3.3.2) as

well as directly assessing location-dependent properties through a mapping technique

(section 3.4).  Overall, these examinations demonstrate that there is dramatic variability

in the local indentation response of bone and not in dentin.  Thus, a substantial difference
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between dentin and bone was also found, even though their compositions are similar,

indicating structure as the differentiating quality between the tissues.  The dentin

modulus values  can be mapped using the same modulus scale as was used for the bone

images (Figure 3-31), allowing for direct comparison between the bone and dentin.  The

optical images of the two tissue types support the difference found in property variability:

the dentin is practically feature-free under optical imaging conditions while the bone

contains many features.  The combined optical-mechanical maps presented in this chapter

allow for some level of understanding of the point-to-point variability in bone properties.

Figure 3- 31: DEJ modulus map (Figure 3-25) with the scale set to the modulus
scale used for bone (Figs. 3-27 to 29 parts (c)).  The dentin shows little heterogeneity

on this scale.  (Contrast in the base optical image has been reduced for easier
visualization of the points)

Structural and compositional factors will be identified and explored as the sources

of the observed property variability and will be discussed further in Chapters 5 and 6.

First, however, will be an examination of the potential influence of time-dependent

mechanical behavior on the indentation responses of mineralized tissues, particularly

bone and dentin with their significant volume fraction of hydrated organic material.
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